《控制与决策》(CN:21-1124/TP)是一本有较高学术价值的大型月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。
《控制与决策》坚持“交流成果,活跃学术,繁荣科技,服务四化”的办刊宗旨,相继发表了一大批最新研究成果,受到广大读者的好评。
作者:刘金平,张五霞,唐朝晖,何捷舟,徐鹏飞 | 入侵检测高斯混合模型聚类模式匹配模糊粗糙集信息增益模式更新
摘要:网络入侵方式已日趋多样化,其隐蔽性强且变异性快,开发灵活度高、适应性强的实时网络安全监测系统面临严峻挑战.对此,提出一种基于模糊粗糙集属性约简(FRS-AR)和GMM-LDA最优聚类簇特征学习(GMM-LDA-OCFL)的自适应网络入侵检测(ANID)方法.首先,引入一种基于模糊粗糙集(FRS)信息增益率的属性约简(AR)方法以实现网络连接数据最优属性集选择;然后,提出一种基于GMM-LDA的最优聚类簇特征学习方法,以获得正常模式特征库和入侵模式库的最优特征表示,同时引入模式库自适应更新机制,使入侵检测模型能够适应网络环境动态变化. KDD99数据集和基于Nidsbench的网络虚拟仿真实验平台的入侵检测结果表明,所提出的ANID方法能有效适应网络环境动态变化,可实时检测出真实网络连接数据中的各种入侵行为,其性能优于当前常用的入侵检测方法,应用前景广阔.
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社